Common variants in *PMS2CL* that can present in *PMS2* as pathogenic variants with extremely low frequencies

Shujuan Pan, Alison Brown, Benoît Leclair, Maria Elias, Daphne Chen, John Kidd, Karla Bowles, Bradford Coffee, Benjamin Roa, Debora Mancini-DiNardo

Myriad Genetic Laboratories, Inc.

BACKGROUND

- *PMS2*, a Lynch syndrome-associated DNA mismatch-repair gene,¹ often is included in next generation sequencing (NGS) hereditary pancancer panels.
- Molecular testing of *PMS2* is complicated by the interference of highly homologous pseudogenes.
 - The most homologous pseudogene,
 PMS2CL, is >98% identical to PMS2 exons
 11-15.²
- Therefore, additional analysis is required for variants identified in exons 11-15 to determine whether they are located in *PMS2* or *PMS2CL*.³
- Correct allocation of variants identified by NGS in this region is critical for proper clinical management.

OBJECTIVE

• Evaluate the frequency of variants that predominantly occur in *PMS2CL* but can also be present in *PMS2* in extremely rare cases (<1%), with a focus on those that are considered pathogenic when they occur in *PMS2*.

METHODS

- Pathogenic/likely pathogenic sequence variants (PV/LPVs) detected from July 2016-April 2019 and large rearrangements (LRs) detected from May 2017-April 2019 in the region of *PMS2*, homologous to *PMS2CL* (exons 11-15), were evaluated in individuals tested on an NGS hereditary pan-cancer panel.
- These variants were initially identified by NGS, then their chromosomal location was confirmed in *PMS2* or *PMS2CL* with target-specific long range PCR (Figure 1).
- PV/LPVs were selected for this analysis if they had >100 observations upon NGS testing, but were confirmed to be in PMS2 in <1% of cases.

RESULTS

- Two sequence variants and three LRs were assessed (Table 1, Figure 2).
- Collectively, these variants were detected in 12,217 individuals (Table 1).
- In 99.91%

 (12,206/12,217)
 of cases, variants
 were confirmed
 orthogonally to be
 present in *PMS2CL* (Table 1).
- In 11 (0.09%)
 individuals, variants
 were located in
 PMS2 (Table 1).
- The rarest PV in PMS2 was c.2186_2187del (p.Leu729Glnfs*6).
 - Only one
 (<0.01%) patient
 was confirmed to
 carry this PV in
 PMS2 (Table 1).

Table 1. Frequencies of Identified Variants in PMS2CL & PMS2

Variant	Total cases	PMS2CL		PMS2	
		# of cases	%	# of cases	%
c.2186_2187del*	7593	7592	99.99%	1	0.01%
c.2243_2246del **	2741	2739	99.93%	2	0.07%
del exons 13-14	992	990	99.80%	2	0.20%
del exon 13	620	616	99.35%	4	0.65%
del exon 15	271	269	99.26%	2	0.74%
Total	12217	12206	99.91%	11	0.09%

*p.Leu729Glnfs*6, **p.Lys748Metfs*19

CONCLUSIONS

- Comprehensive testing in a large testing population enabled identification of PV/ LPVs that are predominantly present in *PMS2CL* but can occur in *PMS2* in extremely rare cases.
- These data highlight the need to disambiguate PV/LPVs in PMS2 versus PMS2CL and emphasize the importance of additional analysis for all potential PV/LPVs identified in the pseudogene region by NGS, even for those variants that occur in PMS2CL in >99.99% of the cases.
- We have demonstrated that, though rare, these variants can occur in *PMS2*.
- Failure to confirm the PV/ LPV location can produce a false negative result with significant implications for clinical management.